Перевод: со всех языков на все языки

со всех языков на все языки

Royal Signals Institution

  • 1 Royal Signals Institution

    RSI, Бр Royal Signals Institution

    English-Russian dictionary of planing, cross-planing and slotting machines > Royal Signals Institution

  • 2 Royal Signals Institution

    Военный термин: Институт войск связи

    Универсальный англо-русский словарь > Royal Signals Institution

  • 3 Royal Signals Institution

    Military: RSI

    Универсальный русско-английский словарь > Royal Signals Institution

  • 4 RSI

    1) Общая лексика: relative strength index
    2) Медицина: Repetitive Strain Injury (см. http://iamok.ru/podm/komp/articles/mouse.html), хроническое растяжение сухожилий травматического характера (см. http://iamok.ru/podm/komp/articles/mouse.html), Repetitive Surf Injury
    5) Шутливое выражение: Repetitive Solitaire Injury
    6) Математика: Relative Strength Indicator
    7) Биржевой термин: Relation Specific Investment
    8) Грубое выражение: Really Stupid Installation, Repetitive Stupidity Injury
    9) Сокращение: Rationalisation, Standardisation, Interoperability, Regimental Signal Instructor (British Army), Research Studies Institute
    10) Университет: The Research Science Institute
    12) Вычислительная техника: Repetitive Strain Injury
    14) Космонавтика: RADARSAT International Inc. (Canada)
    16) Фирменный знак: Race Services Incorporated, Recording Sound Industry, Refrigeration Supply, Inc., Resource Services Incorporated, Resource Services, Inc., Rethink Solutions, Inc., Rising Stars Inc
    17) СМИ: Reality Sets In
    18) Сетевые технологии: Random Section Interface, Requirements Service Interface
    19) Химическое оружие: random selective inspection
    20) Расширение файла: Repetitive Strain Injury (Carpal Tunnel Syndrome)
    22) Фармация: СИБ, Справочная Информация по Безопасности (RIS = Reference Safety Information), request for supplementary information (http://www.pharmaceutical-medicine.org/document/session1/sigtuna_080917_ljungberg.pdf)

    Универсальный англо-русский словарь > RSI

  • 5 Rsi

    1) Общая лексика: relative strength index
    2) Медицина: Repetitive Strain Injury (см. http://iamok.ru/podm/komp/articles/mouse.html), хроническое растяжение сухожилий травматического характера (см. http://iamok.ru/podm/komp/articles/mouse.html), Repetitive Surf Injury
    5) Шутливое выражение: Repetitive Solitaire Injury
    6) Математика: Relative Strength Indicator
    7) Биржевой термин: Relation Specific Investment
    8) Грубое выражение: Really Stupid Installation, Repetitive Stupidity Injury
    9) Сокращение: Rationalisation, Standardisation, Interoperability, Regimental Signal Instructor (British Army), Research Studies Institute
    10) Университет: The Research Science Institute
    12) Вычислительная техника: Repetitive Strain Injury
    14) Космонавтика: RADARSAT International Inc. (Canada)
    16) Фирменный знак: Race Services Incorporated, Recording Sound Industry, Refrigeration Supply, Inc., Resource Services Incorporated, Resource Services, Inc., Rethink Solutions, Inc., Rising Stars Inc
    17) СМИ: Reality Sets In
    18) Сетевые технологии: Random Section Interface, Requirements Service Interface
    19) Химическое оружие: random selective inspection
    20) Расширение файла: Repetitive Strain Injury (Carpal Tunnel Syndrome)
    22) Фармация: СИБ, Справочная Информация по Безопасности (RIS = Reference Safety Information), request for supplementary information (http://www.pharmaceutical-medicine.org/document/session1/sigtuna_080917_ljungberg.pdf)

    Универсальный англо-русский словарь > Rsi

  • 6 Институт войск связи

    Универсальный русско-английский словарь > Институт войск связи

  • 7 RSI

    RSI, radar scope interpretation
    ————————
    RSI, radiation status indicator
    ————————
    RSI, rationalization, standardization and interoperability (program)
    программа обеспечения рационализации, стандартизации и интероперабельности
    ————————
    RSI, receipt, storage, and issue
    получение, хранение и выдача
    ————————
    RSI, record status indicator
    ————————
    RSI, reflected signal indication
    ————————
    RSI, replacement stream input
    ————————
    RSI, Бр Royal Signals Institution

    English-Russian dictionary of planing, cross-planing and slotting machines > RSI

  • 8 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 9 Gregory, Sir Charles Hutton

    [br]
    b. 14 October 1817 Woolwich, England
    d. 10 January 1898 London, England
    [br]
    English civil engineer, inventor of the railway semaphore signal.
    [br]
    Gregory's father was Professor of Mathematics at the Royal Military Academy, Woolwich.C.H. Gregory himself, after working for Robert Stephenson, was appointed Engineer to the London \& Croydon Railway in 1839. On it, at New Cross in 1841, he installed a semaphore signal derived from signalling apparatus used by the Royal Navy; two hinged semaphore arms projected either side from the top of a post, signalling to drivers of trains in each direction of travel. In horizontal position each arm signified "danger", an arm inclined at 45° meant "caution" and the vertical position, in which the arms disappeared within a slot in the post, meant "all right". Gregory's signal was the forerunner of semaphore signals adopted on railways worldwide. In 1843 Gregory invented the stirrup frame: signal arms were connected to stirrups that were pushed down by the signalman's foot in order to operate them, while the points were operated by levers. The stirrups were connected together to prevent conflicting signals from being shown. This was a predecessor of interlocking. In 1846 Gregory became Engineer to the Bristol \& Exeter Railway, where in 1848 he co-operated with W.B. Adams in the development and operation of the first self-propelled railcar. He later did civil engineering work in Italy and France, was Engineer to the Somerset Central and Dorset Central railways and became Consulting Engineer for the government railways in Ceylon (now Sri Lanka), Cape of Good Hope, Straits Settlements and Trinidad.
    [br]
    Principal Honours and Distinctions
    Companion of the Order of St Michael and St George 1876. Knight Commander of the Order of St Michael and St George 1883. President, Institution of Civil Engineers 1867– 8.
    Bibliography
    1841, Practical Rules for the Management of a Locomotive Engine, London (one of the earliest such textbooks).
    Further Reading
    Obituary, 1898, Engineering 65 (14 January). See also Saxby, John.
    PJGR

    Biographical history of technology > Gregory, Sir Charles Hutton

  • 10 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 11 Thomson, Sir William, Lord Kelvin

    [br]
    b. 26 June 1824 Belfast, Ireland (now Northern Ireland)
    d. 17 December 1907 Largs, Scotland
    [br]
    Irish physicist and inventor who contributed to submarine telegraphy and instrumentation.
    [br]
    After education at Glasgow University and Peterhouse, Cambridge, a period of study in France gave Thomson an interest in experimental work and instrumentation. He became Professor of Natural Philosophy at Glasgow in 1846 and retained the position for the rest of his career, establishing the first teaching laboratory in Britain.
    Among his many contributions to science and engineering was his concept, introduced in 1848, of an "absolute" zero of temperature. Following on from the work of Joule, his investigations into the nature of heat led to the first successful liquefaction of gases such as hydrogen and helium, and later to the science of low-temperature physics.
    Cable telegraphy gave an impetus to the scientific measurement of electrical quantities, and for many years Thomson was a member of the British Association Committee formed in 1861 to consider electrical standards and to develop units; these are still in use. Thomson first became Scientific Adviser to the Atlantic Telegraph Company in 1857, sailing on the Agamemnon and Great Eastern during the cable-laying expeditions. He invented a mirror galvanometer and more importantly the siphon recorder, which, used as a very sensitive telegraph receiver, provided a permanent record of signals. He also laid down the design parameters of long submarine cables and discovered that the conductivity of copper was greatly affected by its purity. A major part of the success of the Atlantic cable in 1866 was due to Thomson, who received a knighthood for his contribution.
    Other instruments he designed included a quadrant electrostatic voltmeter to measure high voltages, and his "multi-cellular" instrument for low voltages. They could be used on alternating or direct current and were free from temperature errors. His balances for precision current measurement were widely used in standardizing laboratories.
    Thomson was a prolific writer of scientific papers on subjects across the whole spectrum of physics; between 1855 and 1866 he published some 110 papers, with a total during his life of over 600. In 1892 he was raised to the peerage as Baron Kelvin of Largs. By the time of his death he was looked upon as the "father" of British physics, but despite his outstanding achievements his later years were spent resisting change and progress.
    [br]
    Principal Honours and Distinctions
    Knighted 1866. Created Lord Kelvin of Largs 1892. FRS 1851. President, Royal Society 1890–4. An original member of the Order of Merit 1902. President, Society of Telegraph Engineers 1874. President, Institution of Electrical Engineers 1889 and 1907. Royal Society Royal Medal 1856, Copley Medal 1883.
    Bibliography
    1872, Reprints of Papers on Electrostatics and Magnetism, London; 1911, Mathematical and Physical Papers, 6 vols, Cambridge (collections of Thomson's papers).
    Further Reading
    Silvanus P.Thompson, 1910, The Life of William Thomson, Baron Kelvin of Largs, 2 vols, London (an uncritical biography).
    D.B.Wilson, 1987, Kelvin and Stokes: A Comparative Study in Victorian Physics, Bristol (provides a present-day commentary on all aspects of Thomson's work).
    J.G.Crowther, 1962, British Scientists of the 19th Century, London, pp. 199–257 (a short critical biography).
    GW

    Biographical history of technology > Thomson, Sir William, Lord Kelvin

  • 12 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

См. также в других словарях:

  • Royal Military College of Canada — Motto Truth, Duty, Valour Established 1876 Type …   Wikipedia

  • Royal Engineers — British Army Arms and Services Combat Arms Royal Armoured Corps Infantry Guards Division Scottish Division …   Wikipedia

  • Royal Institution Christmas Lectures — Michael Faraday delivering a Christmas Lecture in 1856. The Royal Institution Christmas Lectures are a series of lectures on a single topic, which have been held at the Royal Institution in London each year since 1825. The lectures present… …   Wikipedia

  • Royal Engineers — Corps of Royal Engineers Insigne des Royal Engineers Période XVe siècle aujourd hui Pays …   Wikipédia en Français

  • Royal Military College (Malaysia) — The Royal Military College (also known as RMC is a premier boarding school in Malaysia. The sprawling RMC campus covers an area of 1,200 acres (486 hectares) amongst the Green Hills near the town of Sungai Besi (about 10 miles (16 km) from Kuala… …   Wikipedia

  • Royal Institute of Technology — Infobox University name =Royal Institute of Technology native name =Kungliga Tekniska Högskolan motto =Vetenskap och Konst ( Science and Art ) established =1827 type =Public University city =Stockholm country =Sweden students =13,500 doctoral… …   Wikipedia

  • List of Australian organisations with royal patronage — Organisations* 1st 15th Royal New South Wales Lancers * Australasian Institute of Mining and Metallurgy (incorporated by Royal Charter) * Australian Academy of the Humanities (incorporated by Royal Charter) * Australian Academy of Science… …   Wikipedia

  • Ian Hogg (Royal Navy officer) — Infobox Military Person name=Sir Ian Hogg caption= born= May 30, 1911 died= March 2, 2003 placeofbirth= India placeofdeath= nickname= allegiance= branch= Royal Navy serviceyears= 1929 1970 rank= Vice Admiral unit= commands= battles= World War II… …   Wikipedia

  • Christopher Henn-Collins — Colonel Christopher Henn Collins Born 5 June 1915 Shrewsbury, England Died 8 August 2006 (aged 91) Years of service 1934–1947 Rank …   Wikipedia

  • Reginald Victor Jones — Professor R. V. Jones R.V. Jones with Director of Central Intelligence, R. James Woolsey, Jr., and Jeannie de Clarens in 1993 …   Wikipedia

  • Ernst Lindemann — Ernst Lindemann …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»